Python 进程线程协程(4)--线程池

你勤奋充电努力工作保持身材,对人微笑这些都不是为了取悦他人,而是为了扮靓自己照亮自己的心,告诉自己我是一股独立向上的力量。

在Python中还有一个线程池的概念,它也有并发处理能力,在一定程度上能提高系统运行效率;

线程的生命周期可以分为5个状态:创建、就绪、运行、阻塞和终止。自线程创建到终止,线程便不断在运行、创建和销毁这3个状态。一个线程的运行时间可由此可以分为3部分:线程的启动时间、线程体的运行时间和线程的销毁时间。在多线程处理的情景中,如果线程不能被重用,就意味着每次创建都需要经过启动、销毁和运行3个过程。这必然会增加系统相应的时间,降低了效率。看看之前介绍线程的博文的例子中( 点击此处可以阅读),有多少个任务,就创建多少个线程,但是由于Python特有的GIL限制,它并不是真正意义上的多线程,反而会因为频繁的切换任务等开销而降低了性能( 点击此处可以了解Python的GIL)。这种情况下可以使用线程池提高运行效率。

线程池的基本原理如下图,它是通过将事先创建多个能够执行任务的线程放入池中,所需要执行的任务通常要被安排在队列任务中。一般情况下,需要处理的任务比线程数目要多,线程执行完当前任务后,会从队列中取下一个任务,知道所有的任务完成。

Python:线程、进程与协程(7)——线程池_Python

由于线程预先被创建并放入线程池中,同时处理完当前任务之后并不销毁而是被安排处理下一个任务,因此能够避免多次创建线程,从而节省线程创建和销毁的开销,能带来更好的性能和系统稳定性。所以,说白了,Python的线程池也没有利用到多核或者多CPU的优势,只是跟普通的多线程相比,它不用去多次创建线程,节省了线程创建和销毁的时间,从而提高了性能。

Python中 线程池技术适合处理突发性大量请求或者需要大量线程来完成任务、但每个任务实际处理时间较短的场景,它能有效的避免由于系统创建线程过多而导致性能负荷过大、响应过慢等问题。下面介绍几种利用线程池的方法。

自定义线程池模式

我们可以利用Queue模块和threading模块来实现线程池。Queue用来创建任务队列,threading用来创建一个线程池子。

看下面例子

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import Queue,threading

class Worker(threading.Thread):
"""
定义一个能够处理任务的线程类,属于自定义线程类,自定义线程类就需要定义run()函数
"""

def __init__(self,workqueue,resultqueue,**kwargs):
threading.Thread.__init__(self,**kwargs)
self.workqueue = workqueue#存放任务的队列,任务一般都是函数
self.resultqueue = resultqueue#存放结果的队列

def run(self):
while True:
try:
#从任务队列中取出一个任务,block设置为False表示如果队列空了,就会抛出异常
callable,args,kwargs = self.workqueue.get(block=False)
res = callable(*args,**kwargs)
self.resultqueue.put(res)#将任务的结果存放到结果队列中
except Queue.Empty:#抛出空队列异常
break

class WorkerManger(object):
"""
定义一个线程池的类
"""
def __init__(self,num=10):#默认这个池子里有10个线程
self.workqueue = Queue.Queue()#任务队列,
self.resultqueue = Queue.Queue()#存放任务结果的队列
self.workers = []#所有的线程都存放在这个列表中
self._recruitthreads(num)#创建一系列线程的函数
def _recruitthreads(self,num):
"""
创建线程
"""
for i in xrange(num):
worker = Worker(self.workqueue,self.resultqueue)
self.workers.append(worker)

def start(self):
"""
启动线程池中每个线程
"""
for work in self.workers:
work.start()

def wait_for_complete(self):
"""
等待至任务队列中所有任务完成
"""
while len(self.workers):
worker = self.workers.pop()
worker.join()
if worker.isAlive() and not self.workqueue.empty():
self.workers.append(worker)

def add_job(self,callable,*args,**kwargs):
"""
往任务队列中添加任务
"""
self.workqueue.put((callable,args,kwargs))


def get_result(self,*args,**kwargs):
"""
获取结果队列
"""
return self.resultqueue.get(*args,**kwargs)

def add_result(self,result):
self.resultqueue.put(result)

上面定义了一个线程池,它的初始化函数init()定义了一些存放相关数据的属性,这在Python的一些内部模块的类的定义中很常见,所有有时候多看看源码其实挺好的,学习大神的编程习惯和编程思想。

另外还要提到一点,Queue模块中的队列,不仅可以存放数据(指字符串,数值,列表,字典等等),还可以存放函数的(也就是任务),上面的代码中,callable是一个函数,当用put()将一个函数添加到队列时,put()接受的参数有函数对象以及该函数的相关参数,而且要是一个整体,所以就有了上面代码中的self.workqueue.put((callable,args,kwargs))。同理,当从这种存放函数的队列中取出数据,它返回的就是一个函数对象包括它的相关参数,有兴趣的可以打印出上面代码中run()里的callable,args,kwargs。

下面就简单的举个小例子吧。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import urllib2,datetime
def open_url(url):
try:
res = urllib2.urlopen(url).getcode()
except urllib2.HTTPError, e:
res = e.code
#print res
res = str(res)
with open('/home/liulonghua/无标题文档','wr') as f:
f.write(res)
return res
if __name__ == "__main__":
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
'http://planet.python.org/',
'https://wiki.python.org/moin/LocalUserGroups',
'http://www.python.org/psf/',
'http://docs.python.org/devguide/',
'http://www.python.org/community/awards/'
]
t1 = datetime.datetime.now()
w = WorkerManger(2)
for url in urls:
w.add_job(open_url,url)
w.start()
w.wait_for_complete()
t2 = datetime.datetime.now()
print t2 - t1

最后结果如下:

Python:线程、进程与协程(7)——线程池_进程池_02

如果把上面代码改成用多线程而不是用线程池,会是怎样的呢?

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
if __name__ == "__main__":
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
'http://planet.python.org/',
'https://wiki.python.org/moin/LocalUserGroups',
'http://www.python.org/psf/',
'http://docs.python.org/devguide/',
'http://www.python.org/community/awards/'
]
t1 = datetime.datetime.now()
for url in urls:
t = threading.Thread(target=open_url,args=(url,))
t.start()
t.join()
t2 = datetime.datetime.now()
print t2-t1

运行效率的差异还是很大的,有兴趣的可以动手试试。

使用现成的线程池模块

下载安装也很简单,用pip工具

1
sudo pip install threadpool

注意:这里要提到一点,我就陷入这个坑,还好没有花多长时间就解决了。由于我的电脑里有python2.7.12,python3.5,还有一个PyPy5.4.1,上面的指令竟然将threadpool包安装到了PyPy目录下了,所以在python2.7.12里,我import threadpool,它一直报错,如果你的系统里有多个Python版本,又没有用virtualenvs虚拟环境工具,很容易造成这种混乱,虽然我安装了virtualenvs,但在自己的电脑上很少用,这里的解决方法是:

1
sudo python -m pip install threadpool

以区分PyPy,同理如果是在PyPy环境下安装第三方包的话,用sudo pypy -m pip install packagename,这个在之前的博文中也有介绍,感兴趣的可以 点此

该模块主要的类和方法:

  1. threadpool.ThreadPool:线程池类,主要是用来分派任务请求和收集运行结果。主要方法有:

    • __init__(self,number_workers,q_size,resq_size=0,poll_timeout=5):

      建立线程池,并启动对应的num_workers的线程;q_size表示任务请求队列的大小,resq_size表示存放运行结果队列的大小。

    • createWorkers(self,num_workers,poll_timeout=5):

      将num_workers数量对应的线程加入线程池

    • dismissWorkers(self,num_workers,do_join=False):

      告诉num_workers数量的工作线程在执行完当前任务后退出

    • joinAllDismissWorkers(self):

      在设置为退出的线程上执行Thread.join

    • putRequest(self,request,block=True,timeout=None):

      加入一个任务请求到工作队列

    • pool(self,block=False)

      处理任务队列中新请求。也就是循环的调用各个线程结果中的回调和错误回调。不过,当请求队列为空时会抛出 NoResultPending 异常,以表示所有的结果都处理完了。这个特点对于依赖线程执行结果继续加入请求队列的方式不太适合。

    • wait(self)

      等待执行结果,直到所有任务完成。当所有执行结果返回后,线程池内部的线程并没有销毁,而是在等待新任务。因此,wait()之后依然可以在此调用pool.putRequest()往其中添加任务。

  2. threadpool.WorkerThread:处理任务的工作线程,主要有run()方法和dismiss()方法。

  3. threadpool.WorkRequest:任务请求类,包含有具体执行方法的工作请求类

    • __init__(self,callable,args=None,kwds=None,requestID=None,callback=None,exc_callback=None)

      创建一个工作请求。

  4. makeRequests(callable_,args_list,callback=None,exc_callback=_handle_thread_exception):

    主要函数,用来创建具有相同的执行函数但参数不同的一系列工作请求。

有了上面自定义线程池模式的基础,这个模块不难理解,有兴趣的可以去看看该模块的源码。它的使用步骤一般如下:

  • (1)引入threadpool模块
  • (2)定义线程函数
  • (3)创建线程 池threadpool.ThreadPool()
  • (4)创建需要线程池处理的任务即threadpool.makeRequests()
  • (5)将创建的多个任务put到线程池中,threadpool.putRequest
  • (6)等到所有任务处理完毕theadpool.pool()

将上面的例子用线程池模块进行修改,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import threadpool
if __name__ == "__main__":
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
'http://planet.python.org/',
'https://wiki.python.org/moin/LocalUserGroups',
'http://www.python.org/psf/',
'http://docs.python.org/devguide/',
'http://www.python.org/community/awards/'
]
t1 = datetime.datetime.now()
pool = threadpool.ThreadPool(2)

requests = threadpool.makeRequests(open_url,urls)
[pool.putRequest(req) for req in requests]
pool.wait()
t2 = datetime.datetime.now()
print t2-t1

执行结果如下:

Python:线程、进程与协程(7)——线程池_进程池_04

multiprocessing.dummy 执行多线程任务

multiprocessing.dummy 模块与 multiprocessing 模块的区别: dummy 模块是多线程,而 multiprocessing 是多进程, api 都是通用的。

Python3里的multiprocessing里也有现成的线程池,如下

1
from multiprocessing.pool import ThreadPool

有时候看到有人这么用dummy,from multiprocessing.dummy import Pool as ThreadPool ,把它当作了一个线程池。它的属性和方法可以参考 进程池。将上面的例子可以用这种方法改下代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from multiprocessing.dummy import Pool as ThreadPool 
if __name__ == "__main__":
urls = [
'http://www.python.org',
'http://www.python.org/about/',
'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
'http://www.python.org/doc/',
'http://www.python.org/download/',
'http://www.python.org/getit/',
'http://www.python.org/community/',
'https://wiki.python.org/moin/',
'http://planet.python.org/',
'https://wiki.python.org/moin/LocalUserGroups',
'http://www.python.org/psf/',
'http://docs.python.org/devguide/',
'http://www.python.org/community/awards/'
]
t1 = datetime.datetime.now()
pool =ThreadPool(2)
pool.map(open_url,urls)
pool.close()
pool.join()
t2 = datetime.datetime.now()
print t2-t1

运行结果如下:

Python:线程、进程与协程(7)——线程池_线程池_05

原文: https://blog.51cto.com/u_11026142/1879245

-------------本文结束 感谢您的阅读-------------
作者Magiceses
有问题请 留言 或者私信我的 微博
满分是10分的话,这篇文章你给几分